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Abstract. We evaluate the ground state of a mixture of bosons and spin-polarized fermions in the case
of attractive boson-boson interactions, using a variational Ansatz for the Bose condensate wave function
and the Thomas-Fermi approximation for the fermions in the mean field of the condensate. Within this
approximation we show that the presence of the fermions tends to restrict the metastability range of the
condensate, irrespectively of the sign of the boson-fermion interactions. Numerical illustrations are reported
for mixtures of 7Li atoms with fermions having the 6Li mass.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
67.40.Db Quantum statistical theory; ground state, elementary excitations

The report of Bose-Einstein condensation in a vapour of
spin-polarized 7Li atoms which are confined and cooled
inside a permanent-magnet trap [1,2] has drawn special
interest from the fact that the s-wave scattering length of
these atoms is negative [3]. In these conditions a macro-
scopic Bose condensate is predicted to be mechanically
unstable against collapse [4]. However, in the inhomoge-
neous state which is realized inside the trap the zero-point
energy can exceed the attractive interactions and prevent
collapse of the condensate when it contains a finite number
N of atoms up to a critical number Nc [5]. For N < Nc the
energy of the condensate as a function of its central density
shows a metastable minimum separated from collapse by a
barrier, suggesting the possibility of macroscopic quantum
tunneling [6]. Thermal fluctuations decrease the number
of 7Li condensate particles at the point of instability [7].

Trapping of fermionic species has also been achieved
for 6Li [8] and 40K [9], and trapped mixtures of bosonic
and fermionic species are expected to become accessible
to experiment in the near future. Illustrative calculations
for the case of repulsive boson-boson and boson-fermion
interactions have been reported by Mølmer [10] in the
Thomas-Fermi approximation at zero temperature and by
Amoruso et al. [11] in a semiclassical three-fluid model at
finite temperature. In the present work we evaluate the
ground state of boson-fermion mixtures in the case of at-
tractive boson-boson interactions, with specific attention
to the role of the fermionic component in modifying the
range of metastability of the Bose condensate.

We assume that the vapour has reached equilibrium
inside the trap and take the fermionic component as a
dilute, spin-polarized Fermi gas. The s-wave collisions be-
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tween pairs of fermions are inhibited by the Pauli prin-
ciple, so that to leading order only p-wave scattering
and dipole-dipole magnetic interactions play a role. How-
ever, these interactions have very small effects at very
low temperature [11,12]. We neglect them and introduce
the boson-boson and boson-fermion coupling parameters
g = 4π~2ab/mb and f = 2π~2af/mr, with ab and af the
corresponding s-wave scattering lengths, mb and mf the
atomic masses and mr = mbmf/(mb + mf) the reduced
mass of a boson-fermion pair. We adopt the Thomas-Fermi
approximation for the fermion density profile nf(r) in the
mean field of the condensate, that is

nf(r) =
1

6π2
(2mf/~2)3/2[εf − V (f)

ext(r)− f |Φ(r)|2]3/2 (1)

where εf is the Fermi energy, V (f)
ext(r) is the confining po-

tential acting on the fermions and Φ(r) is the wave func-
tion of the Bose condensate. The Fermi energy is to be
determined from the number Nf of fermions in the trap
according to Nf =

∫
drnf(r). From previous analyses of

the semiclassical regime and finite-size effects in Fermi
vapours [13], equation (1) should be a good approxima-
tion for the present purposes.

The Gross-Pitaevskii equation for the condensate wave
function Φ(r) is[
− ~2

2mb
∇2 + V

(b)
ext (r) + g|Φ(r)|2 + fnf(r)

]
Φ(r) = µbΦ(r)

(2)

where V
(b)

ext (r) is the confining potential acting on the
bosons and the chemical potential µb is to be determined
from the number Nb of bosons in the trap according
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to Nb =
∫

dr|Φ(r)|2. Since nf(r) is a function of Φ(r)
(see (1)), the fermion-boson interaction term in (2) is a
non-linear one and reflects, of course, the sign of the cou-
pling parameter f . Bearing this in mind, we construct the
energy functional E[Φ] from which (2) can be obtained by
minimization. This is

E[Φ] =
∫

dr
[ ~2

2mb
|∇Φ|2 + V

(b)
ext |Φ|2 +

1
2
g|Φ|4

− 1
15π2

(2mf

~2

)3/2

(εf − V (f)
ext − f |Φ|2)5/2

]
. (3)

In the following we take isotropic confinements for both
components, i.e. V (b)

ext (r) = (1/2)mbω
2
br

2 and V f
ext(r) =

(1/2)mfω
2
f r

2. We then assume a Gaussian Ansatz for the
condensate density,

|Φ(y)|2 = Nb

(
2α
π

)3/2

exp(−2αy2) (4)

and determine the parameter α variationally from the en-
ergy functional in (3). In (4) we have set r = yaho with
aho = (~/mbωb)1/2.

Upon inserting (4) into (3) we find that the energy
becomes a function E(α) of the variational parameter α,
given by

E(α) =
3
2
Nb

(
α+

1
4α

)
+

1
2
gN2

b

(α
π

)3/2

− 4
15π

(
2
mf

mb

)3/2 ∫ ∞
0

y2F (y;α)dy (5)

where

F (y;α) =[
εf −Nbf

(
2α
π

)3/2

exp(−2αy2)− mfω
2
f

2mbω2
b

y2
]5/2

. (6)

In these equations energies are in units of ~ωb and the
coupling constant f is in units of ~ωba

3
ho.

Given the values of the system parameters (atomic
masses, scattering lengths and trap frequencies) and the
number Nf of fermions, the function E(α) in (5) has a
minimum at α = αeq for all values of the number Nb of
trapped bosons which are below a critical value Nc. The
value of the chemical potential µb is obtained for Nb < Nc

from µb = ∂E(α)/∂Nb|α=αeq . Clearly, the minimization of
E(α) must be carried out in parallel with the evaluation
of the fermion density profile from (1) and with the deter-
mination of the Fermi energy from the normalization of
the fermion density profile to Nf . As the final result one
obtains the density profiles of both fermions and bosons
at equilibrium, the bosonic one being given by (4) with
α = αeq.

At Nb = Nc the minimum in E(α) becomes a flex
point and the vapour becomes unstable against collapse.
The critical number Nc of bosons and the corresponding
value αc of the condensate width parameter are therefore
determined by asking that the first and the second deriva-
tive of E(α) with respect to α should vanish at α = αc

Fig. 1. Change in the reduced critical number Nc/N
0
c of

bosons in the condensate versus the reduced fermion-boson
coupling strength f , for three values of the reduced number
Nf/N

0
c of fermions. The system parameters refer to 7Li atoms

in a mixture with fermions having the mass of 6Li atoms, the
two vapours being confined in spherically symmetric harmonic
traps with ωb = ωf = 908 s−1.

and Nb = Nc. These two conditions are easily derived in
explicit form from equations (5, 6) and are solved numer-
ically for αc and Nc in parallel with the evaluation of the
fermion density profile and of the Fermi energy εf .

Figure 1 reports our result for the ratio Nc/N
0
c over a

very wide range of values for the boson-fermion coupling
parameter f (in units of ~ωba

3
ho) at three values of the

ratio Nf/N
0
c , N0

c being the critical number of bosons at
Nf = 0. The parameters describing the bosonic component
are those appropriate to 7Li atoms in the trap realized by
Bradley et al. [1] (ab = −27.6 Bohr radii, ωb = 908 s−1

and mb = mass of 7Li atom), while for the fermions we
have chosen ωf = ωb and mf = mass of 6Li atom. The
6Li–7Li interaction has been evaluated by Abraham et al.
[3], with the result af = 40.9 Bohr radii or f = 0.0093 in
the reduced units used in Figure 1.

It is clear from Figure 1 that the addition of fermions
restricts the range of metastability of the 7Li conden-
sate, irrespectively of the sign of the fermion-boson cou-
pling and indeed most drastically in the case of a negative
fermion-boson scattering length. However, only the central
portion of the curves in Figure 1 is of interest when the
fermion-boson scattering length and the fermion mass are
comparable in magnitude with the bosonic ones. In these
conditions, which apply to the 6Li–7Li mixture, the effect
of the fermions on the metastability of the condensate is
small.

Although the results shown in Figure 1 refer to a spe-
cific choice of system parameters, their general aspects
can be understood from the density profiles that we re-
port at Nf/N

0
c = 1 in Figures 2 and 3 for f > 0 and

f < 0, respectively. The case of fermion-boson repulsion
(with the choice af = 40.9 Bohr radii or f = 0.0093) is
illustrated in Figure 2. The Fermi vapour tends to spread
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Fig. 2. Density profiles of bosons and fermions (full curves)
at Nb = Nc, for the case Nf/N

0
c = 1 and f = 0.0093 (corre-

sponding to the 6Li–7Li mixture). The dashed curve shows the
profile for an independent Fermi gas (f = 0).

out under its kinetic pressure and this process is enhanced
by the fermion-boson repulsion, as is also the case for
boson-fermion mixtures with repulsive boson-boson inter-
actions [10,11]. In the present case of boson-boson attrac-
tions, however, the Bose condensate is very compact and
is squeezed inward by the repulsions from the surround-
ing Fermi vapour. This squeezing of the condensate is the
cause for the decrease in its range of metastability which
is seen in the RHS part of Figure 1.

Figure 3 illustrates the density profiles in the case
of attractive boson-fermion interactions with the choice
af = −40.9 Bohr radii or f = −0.0093. The dip shown in
Figure 2 in the fermion density near the centre of the con-
densate is replaced in Figure 3 by a fermion density pile-up
induced by the fermion-boson attractions. This feature of
the fermion density profile is the cause for the rapid de-
crease of the metastability range of the condensate which
is seen in the left side of Figure 1.

In summary, we have studied the metastability of a
Bose condensate with attractive effective interactions in
the presence of a degenerate Fermi gas at zero temper-
ature. The main result is that the metastability range of
the condensate in a boson-fermion mixture with attractive
boson-boson interactions is reduced for both repulsive and
attractive fermion-boson interactions, this being related to
the features of the density profiles of the two components.
The effect is only minor when the two components have
comparable weights in terms of atom numbers, atomic
masses and scattering lengths, these conditions being
apparently satisfied in the 6Li–7Li mixture for Nf ≈ Nb.
However, the addition of even a relatively small number
of fermions may suffice to destroy a Bose condensate with
attractive interactions if |f | � |g|. In such critical situa-
tions our study should be supplemented by a fully quanti-
tative evaluation from the coupled non-linear Schrödinger
equations for boson and fermion vapours, after a specific
quantitative assessment of the system parameters.

Fig. 3. The same as in Figure 2, but for f = −0.0093.
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